Emergence (coarse-graining and blackboxing)¶
Coarse-graining¶
We’ll use the macro
module to explore alternate spatial scales of
a network. The network under consideration is a 4-node non-deterministic
network, available from the examples
module.
>>> import pyphi
>>> network = pyphi.examples.macro_network()
The connectivity matrix is all-to-all:
>>> network.connectivity_matrix
array([[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]])
We’ll set the state so that nodes are OFF.
>>> state = (0, 0, 0, 0)
At the “micro” spatial scale, we can compute the main complex, and determine the \(\Phi\) value:
>>> main_complex = pyphi.compute.main_complex(network, state)
>>> main_complex.phi
0.113889
The question is whether there are other spatial scales which have greater values of \(\Phi\). This is accomplished by considering all possible coarse-graining of micro-elements to form macro-elements. A coarse-graining of nodes is any partition of the elements of the micro system. First we’ll get a list of all possible coarse-grainings:
>>> grains = list(pyphi.macro.all_coarse_grains(network.node_indices))
We start by considering the first coarse grain:
>>> coarse_grain = grains[0]
>>> coarse_grain
CoarseGrain(partition=((0, 1, 2), (3,)), grouping=(((0, 1, 2), (3,)), ((0,), (1,))))
Each CoarseGrain
specifies two fields: the partition
of states into
macro elements, and the grouping
of micro-states into macro-states. Let’s
first look at the partition:
>>> coarse_grain.partition
((0, 1, 2), (3,))
There are two macro-elements in this partiion: one consists of
micro-elements (0, 1, 2)
and the other is simply micro-element 3
.
We must then determine the relationship between micro-elements and macro-elements. When coarse-graining the system we assume that the resulting macro-elements do not differentiate the different micro-elements. Thus any correspondence between states must be stated solely in terms of the number of micro-elements which are on, and not depend on which micro-elements are on.
For example, consider the macro-element (0, 1, 2)
. We may say that the
macro-element is ON if at least one micro-element is on, or if all
micro-elements are on; however, we may not say that the macro-element is ON
if micro-element 1
is on, because this relationship involves identifying
specific micro-elements.
The grouping
attribute of the CoarseGrain
describes how the state of
micro-elements describes the state of macro-elements:
>>> grouping = coarse_grain.grouping
>>> grouping
(((0, 1, 2), (3,)), ((0,), (1,)))
The grouping consists of two lists, one for each macro-element:
>>> grouping[0]
((0, 1, 2), (3,))
For the first macro-element, this grouping means that the element will be OFF if zero, one or two of its micro-elements are ON, and will be ON if all three micro-elements are ON.
>>> grouping[1]
((0,), (1,))
For the second macro-element, the grouping means that the element will be OFF if its micro-element is OFF, and ON if its micro-element is ON.
One we have selected a partition and grouping for analysis, we can create a mapping between micro-states and macro-states:
>>> mapping = coarse_grain.make_mapping()
>>> mapping
array([0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 3])
The interpretation of the mapping uses the LOLI convention of indexing (see LOLI: Low-Order bits correspond to Low-Index nodes).
>>> mapping[7]
1
This says that micro-state 7 corresponds to macro-state 1:
>>> pyphi.convert.loli_index2state(7, 4)
(1, 1, 1, 0)
>>> pyphi.convert.loli_index2state(1, 2)
(1, 0)
In micro-state 7, all three elements corresponding to the first macro-element are ON, so that macro-element is ON. The micro-element corresponding to the second macro-element is OFF, so that macro-element is OFF.
The CoarseGrain
object uses the mapping internally to create a
state-by-state TPM for the macro-system corresponding to the selected partition
and grouping
>>> coarse_grain.macro_tpm(network.tpm)
Traceback (most recent call last):
...
pyphi.macro.ConditionallyDependentError
However, this macro-TPM does not satisfy the conditional independence
assumption, so this particular partition and grouping combination is not a valid
coarse-graining of the system. Constructing a MacroSubsystem
with this
coarse-graining will also raise
ConditionallyDependentError
:
Lets consider a different coarse-graining instead.
>>> coarse_grain = grains[14]
>>> coarse_grain.partition
((0, 1), (2, 3))
>>> coarse_grain.grouping
(((0, 1), (2,)), ((0, 1), (2,)))
>>> mapping = coarse_grain.make_mapping()
>>> mapping
array([0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 2, 2, 3])
>>> coarse_grain.macro_tpm(network.tpm)
array([[[ 0.09, 0.09],
[ 1. , 0.09]],
[[ 0.09, 1. ],
[ 1. , 1. ]]])
We can now construct a MacroSubsystem
using this coarse-graining:
>>> macro_subsystem = pyphi.macro.MacroSubsystem(network, state, network.node_indices, coarse_grain=coarse_grain)
>>> macro_subsystem
MacroSubsystem((n0, n1))
We can then consider the integrated information of this macro-network and compare it to the micro-network.
>>> macro_mip = pyphi.compute.big_mip(macro_subsystem)
>>> macro_mip.phi
0.597212
The integrated information of the macro subsystem (\(\Phi = 0.597212\)) is greater than the integrated information of the micro system (\(\Phi = 0.113889\)). We can conclude that a macro-scale is appropriate for this system, but to determine which one, we must check all possible partitions and all possible groupings to find the maximum of integrated information across all scales.
>>> M = pyphi.macro.emergence(network, state)
>>> M.emergence
0.483323
>>> M.system
(0, 1, 2, 3)
>>> M.coarse_grain.partition
((0, 1), (2, 3))
>>> M.coarse_grain.grouping
(((0, 1), (2,)), ((0, 1), (2,)))
The analysis determines the partition and grouping which results in the maximum value of integrated information, as well as the emergence (increase in \(\Phi\)) from the micro-scale to the macro-scale.
Blackboxing¶
The macro
module also provides tools for studying the emergence
of systems using blackboxing.
>>> import pyphi
>>> network = pyphi.examples.blackbox_network()
We consider the state where all nodes are off:
>>> state = (0, 0, 0, 0, 0, 0)
>>> all_nodes = (0, 1, 2, 3, 4, 5)
The system has minimal \(\Phi\) without blackboxing:
>>> subsys = pyphi.Subsystem(network, state, all_nodes)
>>> pyphi.compute.big_phi(subsys)
0.215278
We will consider the blackbox system consisting of two blackbox elements, \(ABC\) and \(DEF\), where \(C\) and \(F\) are output elements and \(AB\) and \(DE\) are hidden within their respective blackboxes.
Blackboxing is done with a Blackbox
object. As with CoarseGrain
, we pass it
a partition of micro-elements:
>>> partition = ((0, 1, 2), (3, 4, 5))
>>> output_indices = (2, 5)
>>> blackbox = pyphi.macro.Blackbox(partition, output_indices)
Blackboxes have a few convenience methods. The hidden_indices
property
returns the elements which are hidden within blackboxes:
>>> blackbox.hidden_indices
(0, 1, 3, 4)
The micro_indices
property lists all the micro-elements in the box:
>>> blackbox.micro_indices
(0, 1, 2, 3, 4, 5)
The macro_indices
property generates a set of indices which index the
blackbox macro-elements. Since there are two blackboxes in our example, and
each has one output element, there are two macro-indices:
>>> blackbox.macro_indices
(0, 1)
The macro_state
method converts a state of the micro elements to the state
of the macro-elements. The macro-state of a blackbox system is simply the
state of the system’s output elements:
>>> micro_state = (0, 0, 0, 0, 0, 1)
>>> blackbox.macro_state(micro_state)
(0, 1)
Let us also define a time scale over which to perform our analysis:
>>> time_scale = 2
As in the coarse-graining example, the blackbox and time scale are passed to
MacroSubsystem
:
>>> macro_subsystem = pyphi.macro.MacroSubsystem(network, state, all_nodes, blackbox=blackbox, time_scale=time_scale)
We can now compute \(\Phi\) for this macro system:
>>> pyphi.compute.big_phi(macro_subsystem)
0.638888
We find that the macro subsystem has greater integrated information (\(\Phi = 0.638888\)) than the micro system (\(\Phi = 0.215278\))—the system demonstrates emergence.